A Hamilton-Jacobi-based proximal operator
Stanley Osher ${ }^{1}$, Howard Heaton ${ }^{2}$, Samy Wu Fung ${ }^{3}$
${ }^{1}$ UCLA, ${ }^{2}$ Typal Academy, ${ }^{3}$ Colorado School of Mines

Scope: Optimization with proximals when we do not have exact formulas

Problem: For a continuous and weakly convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $t>0$, estimate

$$
\operatorname{prox}_{t f}(x)=\underset{y}{\operatorname{argmin}} f(y)+\frac{1}{2 t}\|y-x\|^{2},
$$

only using evaluations of f.

- Moreau Envelope
- Hamilton-Jacobi PDEs

■ Cole-Hopf Transformation

- Monte Carlo Sampling

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and time $t>0$, the Moreau envelope u is

$$
u(x, t) \triangleq \min _{y} f(y)+\frac{1}{2 t}\|y-x\|^{2}
$$

When it exists, the gradient is

$$
\begin{aligned}
\nabla u(x, t) & =\frac{1}{t}\left(x-\operatorname{prox}_{t f}(x)\right) \\
\Longrightarrow \quad \operatorname{prox}_{t f}(x) & =x-t \nabla u(x, t) .
\end{aligned}
$$

Hamilton-Jacobi PDEs

The envelope u solves

$$
\left\{\begin{aligned}
u_{t}+\frac{1}{2}\|\nabla u\|^{2}=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u=f & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{aligned}\right.
$$

For small $\delta>0$, we can approximate u using the viscous PDE

$$
\left\{\begin{aligned}
u_{t}^{\delta}+\frac{1}{2}\left\|\nabla u^{\delta}\right\|^{2} & =\frac{\delta}{2} \Delta u^{\delta} & & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u^{\delta} & =f & & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{aligned}\right.
$$

Using an idea from Cole and Hopf, we use the change of variables

$$
v^{\delta}=\exp \left(-u^{\delta} / \delta\right)
$$

for which v^{δ} solves the heat equation

$$
\left\{\begin{aligned}
v_{t}^{\delta}-\frac{\delta}{2} \Delta v^{\delta} & =0 & & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
v^{\delta} & =\exp (-f / \delta) & & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{aligned}\right.
$$

For a heat kernel $\Phi_{\delta t}$, the heat equation solution v^{δ} can be written as

$$
v^{\delta}(x, t)=\left(\Phi_{\delta t} * \exp (-f / \delta)\right)(x)=\mathbb{E}_{y \sim \mathcal{N}(x, \delta t)}[\exp (-f(y) / \delta)]
$$

with the expectation over a normal distribution with variance δt and mean x. Then

$$
\nabla v^{\delta}(x, t)=-\frac{1}{\delta t} \cdot \mathbb{E}_{y \sim \mathcal{N}(x, \delta t)}[(x-y) \exp (-f(y) / \delta)]
$$

which implies

$$
\nabla u^{\delta}(x, t)=\frac{1}{t} \cdot\left(x-\frac{\mathbb{E}_{y \sim \mathcal{N}(x, \delta t)}[y \cdot \exp (-f(y) / \delta)]}{\mathbb{E}_{y \sim \mathcal{N}(x, \delta t)}[\exp (-f(y) / \delta)]}\right)
$$

Using the gradient of the Moreau envelope and our approximation,

$$
\begin{aligned}
\operatorname{prox}_{t f}(x) & =x-t \nabla u(x, t) \\
& \approx x-t \nabla u^{\delta}(x, t) \\
& =\frac{\mathbb{E}_{y \sim \mathcal{N}(x, \delta t)}[y \cdot \exp (-f(y) / \delta)]}{\mathbb{E}_{y \sim \mathcal{N}(x, \delta t)}[\exp (-f(y) / \delta)]} .
\end{aligned}
$$

(Informal) Theorem: If t is sufficiently small and $u(x, t) \geq 0$, then

$$
\lim _{\delta \rightarrow 0^{+}} \frac{\mathbb{E}_{y \sim \mathcal{N}(x, \delta t)}[y \cdot \exp (-f(y) / \delta)]}{\mathbb{E}_{y \sim \mathcal{N}(x, \delta t)}[\exp (-f(y) / \delta)]}=\operatorname{prox}_{t f}(x)
$$

```
Algorithm 1 HJ-Prox - Approximation of Proximal Operator
    1: HJ -Prox \((x, t ; f, \delta, N, \alpha, \varepsilon)\) :
    2: \(\quad\) for \(i \in[N]\) :
    3: \(\quad\) Sample \(y^{i} \sim \mathcal{N}(x, \delta t / \alpha)\)
    4: \(\quad z_{i} \leftarrow f\left(y^{i}\right)\)
    5: if \(\exp \left(-\alpha z_{i} / \delta\right) \leq \varepsilon\) for large proportion of samples:
    6: return \(\operatorname{HJ}-\operatorname{Prox}(x, t ; f, \delta, N, \alpha / 2, \varepsilon)\)
    7: \(\quad \operatorname{prox} \leftarrow \operatorname{softmax}(-\alpha z / \delta)^{\top}\left[y^{1} \cdots y^{N}\right]\)
    8: return prox
```


$$
\begin{aligned}
& \operatorname{prox}_{\mathrm{tf}}(x)=\underset{y}{\operatorname{argmin}} f(y)+\frac{1}{2 \mathrm{t}}\|y-x\|^{2} \\
& \begin{array}{l}
\text { HJJProx }=\text { Convex Combo of } y^{i} \\
y^{i} \text { weight }=\operatorname{softmax}(-f(y) / \delta)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{prox}_{\mathrm{tf}}(x)=\underset{y}{\operatorname{argmin}} f(y)+\frac{1}{2 \mathrm{t}}\|y-x\|^{2} \\
& \begin{array}{l}
\text { HJJProx }=\text { Convex Combo of } y^{i} \\
y^{i} \text { weight }=\operatorname{softmax}(-f(y) / \delta)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{prox}_{\mathrm{tf}}(x)=\underset{y}{\operatorname{argmin}} f(y)+\frac{1}{2 \mathrm{t}}\|y-x\|^{2} \\
& \text { HJJProx }=\text { Convex Combo of } y^{i} \\
& y^{i} \text { weight }=\operatorname{softmax}(-f(y) / \delta)
\end{aligned}
$$

Consider a constrained minimization problem where objective values f can only be accessed via a noisy oracle \mathcal{O}, i.e.

$$
\min _{x \in \mathbb{R}^{1000}} \mathbb{E}[\mathcal{O}(x)] \text { s.t. } A x=b \text {, }
$$

where the expectation is over the noise. We assume A is large and under-determined.
Using HJ-Prox, we solve with the linearized method of multipliers via updates

$$
\begin{aligned}
x^{k+1} & =\operatorname{prox}_{t \mathcal{O}}\left(x^{k}-t A^{\top}\left(u^{k}+\lambda\left(A x^{k}-b\right)\right)\right) \\
u^{k+1} & =u^{k}+\lambda\left(A x^{k+1}-b\right)
\end{aligned}
$$

Relative Error Plots with HJ-Prox

Figure 1: Plots of linearized method of multipliers using HJ-Prox estimates for each proximal. Gradient descent on constraint violation is provided for reference and does not use the oracle \mathcal{O}.

Relative Error Plots with HJ-Prox

Figure 2: Plots of linearized method of multipliers using HJ-Prox estimates for each proximal. Gradient descent on constraint violation is provided for reference and does not use the oracle \mathcal{O}.

Relative Error Plots with HJ-Prox

Figure 3: Plots of linearized method of multipliers using HJ-Prox estimates for each proximal. Gradient descent on constraint violation is provided for reference and does not use the oracle \mathcal{O}.

Relative Error Plots with HJ-Prox

Figure 4: Plots of linearized method of multipliers using HJ-Prox estimates for each proximal. Gradient descent on constraint violation is provided for reference and does not use the oracle \mathcal{O}.

Relative Error Plots with HJ-Prox

Figure 5: Plots of linearized method of multipliers using HJ-Prox estimates for each proximal. Gradient descent on constraint violation is provided for reference and does not use the oracle \mathcal{O}.

- HJ-Prox gives a simple zeroth-order approximation to proximals
- The parameter δ smooths approximations (potentially helpful for denoising)
- HJ-Prox can be embedded inside optimization algorithms (e.g. proximal gradient, Douglas Rachford, ADMM, PDHG)

Preprint: arxiv.org/abs/2211.12997
Reprint: https://www.pnas.org/doi/10.1073/pnas. 2220469120

